Computational translational epigenetics: concept-driven omics analyses

Part 1: The awakening of silent genes in malignancies : a new biomarker discovery strategy

> Part 2: Concept driven omics analyses : EpiMed information system and pipelines

Part 1: The awakening of silent genes in malignancies : a new biomarker discovery strategy

Sophie Rousseaux Saadi Khochbin's team, EpiMed

Institute for Advanced Biosciences

CENTRE DE RECHERCHE UGA - INSERM U 1209 - CNRS UMR 5309

June 2020

Cell identity

Cell identity/function is defined by specific gene expression programs

Gene expression programs are controlled by the epigenome = genome signposting system

Some gene expression programs are highly **TISSUE-SPECIFIC**

Ex. male germ cells specific genes are **epigenetically "locked"** into a silent state in normal adult somatic cells

Part 1 - biomarker discovery

Genetic and epigenetic alterations

Genetic and epigenetic alterations

Gene repression Tumour suppressors, etc..

Genetic and epigenetic alterations

Activation of tissue specific genes

Activation of tissue specific genes

Activation of tissue specific genes

Activation of tissue specific genes

1 – Very restricted pattern of expression

2 – Unknown to the immune system

Placenta

Hypothesis: "out of context" activations of genes occur in all cancer types

Hypothesis: "out of context" activations of genes occur in all cancer types

Systematic search for "out of context" (= ectopic) gene expression in cancer

1st step: establishment of a list of « silent » genes

1st step: establishment of a list of « silent » genes

522 germline- and placenta- restricted genes (TSPS) Part 1 - biomarker discovery

522 germline and placenta « restricted » genes

2nd step: detection of ectopic activation of germline/placenta specific genes in various cancer types

522 germline and placenta « restricted » genes

2nd step: detection of ectopic activation of germline/placenta specific genes in various cancer types

Analysis of approx. 2000 samples from 16 different solid tumours (GSE2109:Expression Project for Oncology (expO) project) Affymetrix microarrays

522 germline and placenta « restricted » genes

2nd step: detection of ectopic activation of germline/placenta specific genes in various cancer types

ON/OFF threshold for binary data

3rd step Clinical use of ectopic gene expressions in cancer

3rd step Clinical use of ectopic gene expressions in cancer

Biomarkers discovery

New approach to cancer prognosis and treatment

Epigenetic origin of ectopic expressions

Epigenetic abnormalities are responsible for the derepression and aberrant expression of germline/placenta-specific genes in cancer (lung)

=> DNA demethylation of the promoter of germline/placenta genes is associated with ectopic expression

Evaluation of the clinical value of ectopic expressions as prognosis markers

Evaluation of the clinical value of ectopic expressions as prognosis markers

Tumours with ectopic expression

=> Compare survival

Tumours with no expression

Evaluation of the clinical value of ectopic expressions as prognosis markers

=> Gene expression **not** associated with prognosis

Evaluation of the clinical value of ectopic expressions as prognosis markers

Tumours with no expression

Tumours with ectopic expression

=> Gene expression associated with prognosis

« off context » activation of germline restricted genes and prognosis:

Discriminating power of our ectopic genes classifying system: example (lung)

Biomarkers based molecular characterization

Gene expression prom

Biomarkers based molecular characterization P1 P3

Supervised transcriptomic analysis

Biomarkers based molecular characterization P1 P3

Up in P3

Biomarkers based molecular characterization

GeneSet Enrichment Analysis

Molecular characterization of highly aggressive tumors

Computational translational epigenetics: concept-driven omics analyses

Part 1: The awakening of silent genes in malignancies : a new biomarker discovery strategy

Part 2: Concept driven omics analyses : EpiMed information system and pipelines

http://epimed.univ-grenoble-alpes.fr/database/

iab 🤅

EpiMed

Saadi Khochbin

Dept Signalling and chromatin

Saadi Khochbin

Epigenetics and cell signaling Saadi Khochbin (DRHC, CNRS)

Sophie Rousseaux (*DR2, INSERM*) Anne-Laure Vitte (*IE Bio, UGA*) Ekaterina Flin (*IR bioinfo, UGA*) Florent Chuffart (*IR Bioinfo, INSERM*)

Sophie Rousseaux

Computational Translational Epigenetics

EpiMed

Ekaterina Flin

Florent Chuffard

Anne-Laure Vitte

to epigenetics

Florent Chuffart

Computational biology to epigenetics

Cancer & chronic diseases biomarkers

IAB 🤅

EpiMed

Computational biology to epigenetics

Cancer & chronic diseases biomarkers

Population Epigenetics

1- identify tissue-specific genes

2- detection of ectopic expression of tissue specific genes in cancer

- 3- correlate ectopic expressions with clinical outcome
- 4- characterize molecular profile of aggressive tumours

1- identify tissue-specific genes

FniMea

cross different types of data

2- detection of ectopic expression of tissue specific genes in cancer

- 3- correlate ectopic expressions with clinical outcome
- 4- characterize molecular profile of aggressive tumours

1- identify tissue-specific genes

FniMea

cross different types of data

2- detection of ectopic expression of tissue specific genes in cancer

ON/OFF binary datasets

3- correlate ectopic expressions with clinical outcome

4- characterize molecular profile of aggressive tumours

1- identify tissue-specific genes

FniMea

cross different types of data

2- detection of ectopic expression of tissue specific genes in cancer

ON/OFF binary datasets

- 3- correlate ectopic expressions with clinical outcome Correlate with clinical data and survival
- 4- characterize molecular profile of aggressive tumours

1- identify tissue-specific genes

FniMea

cross different types of data

2- detection of ectopic expression of tissue specific genes in cancer

ON/OFF binary datasets

- 3- correlate ectopic expressions with clinical outcome Correlate with clinical data and survival
- 4- characterize molecular profile of aggressive tumours

Supervised transcriptomic analysis

1- identify tissue-specific genes

FniMed

cross different types of data

2- detection of ectopic expression of tissue specific genes in cancer

ON/OFF binary datasets

- 3- correlate ectopic expressions with clinical outcome Correlate with clinical data and survival
- 4- characterize molecular profile of aggressive tumours

Supervised transcriptomic analysis

5- Understand molecular basis of aggressive phenotype by comparing with other expression profiles (Gene Set Enrichment Analysis), and using available tools to explore biological significance (Gene Ontology terms, pathways...)

Specificities of our bioinformatic pipelines

cross different types of data

ON/OFF binary datasets

Correlate with clinical data and survival

Supervised transcriptomic analysis

GSEA, ...

Increasing amounts of OMICs data

Update and scale-up strategies + Develop new pipelines

Increasing power of analysis + address new questions

Issues to be solved

- 1- Matching gene and tissues annotations and IDs
- 2- Increasing volumes of data (NGS)
- 3 new types of data (RNAseq, ChIPseq..)
- 4- homogenize clinical annotations and data
- 5- Increase efficiency of pipelines for combined analysis of large and heterogeneous datasets

Issues to be solved

- 1- Matching gene and tissues annotations and IDs
- 2- Increasing volumes of data (NGS)
- 3 new types of data (RNAseq, ChIPseq..)
- 4- homogenize clinical annotations and data
- 5- Increase efficiency of pipelines for combined analysis of large and heterogeneous datasets

Florent Chuffart

Ekaterina Flin

Ekaterina Flin

Navigate through omics and clinical data

1. Gene/genome annotations

Gene-related annotations are extremely **complex** and frequently modified

2. Clinical data and tissue annotations

Clinical data are **heterogeneous**, especially for tissue annotations which are usually different in different datasets

EpiMed Information System

- Different data types (clinical, omics) from different platforms (Affymetrix, Illumina,...) with different data formats (txt, excel, pdf, raw data)
- Various access to public databases (sql, html, xml, json, web services)
- Scripts and pipelines for data analysis (Python, R)

Dealing with more and more omic data...

Update and implement **pipelines for analysis of omic data** of different origin Improve analysis power and efficiency

Development of new **dedicated pipelines** to answer specific biological questions

=> Explore the epigenomic status/landscape of tissue-specific genes using NGS data

Florent Chuffart

EpiMed tools : omic analysis toolbox

=> Hypothesis : Different epigenetic mechanism are involved in the repression of silent genes

http://epimed.univ-grenoble-alpes.fr/database/

http://epimed.univ-grenoble-alpes.fr/downloads/epimed_open_course/

https://epimed.github.io/

https://iab.univ-grenoble-alpes.fr/Plateformes/epigenetique-medicale-et-bioinformatique-epimed