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Cell identity/function is defined by
specific gene expression programs
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Gene expression programs are controlled by
the epigenome = genome signposting system
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Gene expression programs are controlled by
the epigenome = genome signposting system

= chemical modifications of DNA 4 Stabilizes a specific pattern

and histones of gene expression
"/ Abarrier to reprogramming



Gene expression programs are controlled by
the epigenome = genome signposting system
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Some gene expression programs are highly TISSUE-SPECIFIC

Ex. male germ cells specific genes are epigenetically
“locked” into a silent state in normal adult somatic cells
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Cell type specific epigenome ' Cell identity
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Major changes in gene expression programs
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Gene repression
Tumour suppressors, efc..
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Cancer cell « identity loss »

Genetic and epigenetic alterations

Gene repression
Tumour suppressors, efc..

Activation of tissue
specific genes
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Cancer cell « identity loss »

Activation of tissue specific genes
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Cancer cell « identity loss »

Activation of tissue specific genes
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Spermatogenesis Placenta
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@ Cancer cell « identity loss »

Activation of tissue specific genes

Testis/

Spermatogenesis Placenta

N\

1 — Very restricted pattern of expression

2 — Unknown to the immune system
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Hypothesis: “out of context” activations of genes occur in all cancer types
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Hypothesis: “out of context” activations of genes occur in all cancer types

Systematic search for “out of context” (= ectopic) gene expression in cancer
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1st step: establishment of a list of « silent » genes

Expression databases .
Microarrays
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522 germline and placenta « restricted » genes

Dedicated array
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Male germline and placenta genes
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522 germline and placenta « restricted » genes

@ 2nd step: detection of ectopic activation of germline/placenta specific genes in
various cancer types

mmm Gene ON
E (ene OFF

Normal adult non germline tissues \arious cancers

| 1Placenta (1)
estis (2)

Male germline and placenta genes
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522 germline and placenta « restricted » genes

@ 2nd step: detection of ectopic activation of germline/placenta specific genes in

mmm Gene ON
E (ene OFF

Male germline and placenta genes

| 1Placenta (1)

estis (2)

various cancer types

Normal adult non germline tissues \arious cancers

« out of context» gene activations occur-in
ANY type of cancer

A unique source of universal biomarkers and
potential therapeutictargets in-cancer

Analysis of approx. 2000
samples from 16 different
solid tumours
(GSE2109:Expression
Project for Oncology
(expO) project)
Affymetrix microarrays
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522 germline and placenta « restricted » genes

@ 2nd step: detection of ectopic activation of germline/placenta specific genes in
various cancer types
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3" step Clinical use of ectopic gene expressions in cancer
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3" step Clinical use of ectopic gene expressions in cancer

Biomarkers discovery

Genome

Swouahid

v

New approach to cancer
prognosis and treatment
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TSPS genes

Biomarkers discovery pipeline
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Biomarkers discovery pipeline
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Epigenetic origin of ectopic expressions

Cancer (lung)
demethylation

=B

Cancer (lung)
Ectopic expressions

NI somatic tissues

| Fetal lung
| Adult lung

CpGs of TSPS genes

0% methylation 100%methylation
B

Epigenetic abnormalities are responsible for the derepression and aberrant
expression of germline/placenta-specific genes in cancer (lung)

=> DNA demethylation of the promoter of germline/placenta genes is
associated with ectopic expression
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Biomarkers discovery pipeline

Evaluation of the clinical value of ectopic expressions as
prognosis markers
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Biomarkers discovery pipeline

Evaluation of the clinical value of ectopic expressions as

prognosis markers

Tumours with no expression

Tumours with ectopic expression

=> Compare survival
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Biomarkers discovery pipeline

Evaluation of the clinical value of ectopic expressions as
prognosis markers
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Biomarkers discovery pipeline

Evaluation of the clinical value of ectopic expressions as
prognosis markers
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Biomarkers discovery pipeline

« off context » activation of germline restricted genes and prognosis:

Cancer .
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Biomarkers discovery pipeline

P1 = no activation P3 = 3 or more activations

Prognostic
genes

Example of gene combination algorithm
100

1 = no activation

None of the genes
% 60 _ | are active
C_U pu— l I [ [ [
% | P2 =1 or 2 activations Prognosis stratifying
= method
g 20 |
fe)
O

P3 = 3 ormore activations | 3ormore of the

= genes are active
10 20 30 40 50 60

Time (months)
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Discriminating power of our ectopic genes classifying system: example (lung)

Global survival (%)

Biomarkers discovery pipeline
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Biomarkers based molecular characterization

Prognostic associated genes
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Supervised
transcriptomic analysis
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Biomarkers based molecular characterization
P1 P3

prognosis
genes

Supervised
transcriptomic analysis

Part 1 - biomarker discovery



Biomarkers based molecular characterization
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Genes Up

Genes Down

Biomarkers based molecular characterization
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Computational translational epigenetics:
concept-driven omics analyses

Part 2: Concept driven omics analyses :
EpiMed information system and pipelines

http://epimed.univ-grenoble-alpes.fr/database/
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In silico Epigenetics

Computational biology Exaterina Fiin ~ Florent Chuffart
to epigenetics
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In silico Epigenetics
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In silico Epigenetics
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Ectopic gene activations for marker discovery and to
@ explore aggressive tumor molecular signature

1- identify tissue-specific genes

2- detection of ectopic expression of tissue specific genes in cancer

3- correlate ectopic expressions with clinical outcome

4- characterize molecular profile of aggressive tumours

5- Understand molecular basis of aggressive phenotype by
comparing with other expression profiles (Gene Set Enrichment
Analysis), and using available tools to explore biological significance
(Gene Ontology terms, pathways...)
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Ectopic gene activations for marker discovery and to

@ explore aggressive tumor molecular siare

1- identify tissue-specific genes

cross different types of data K
2- detection of ectopic expression of tissue spe ific genes in cancer

ON/OFF binary datasets

3- correlate ectopic expressions with clinical outcome

Correlate with clinical data and survival

4- characterize molecular profile of aggressive tumours
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Specificities of our bioinformatic pipelines
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L 0
W More data = challenging opportunities

Increasing amounts of OMICs data

Update and scale-up strategies
+

Develop new pipelines

Increasing power of analysis
+

address new questions
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AN Updating pipelines

Issues to be solved

1- Matching gene and tissues annotations and IDs
2- Increasing volumes of data (NGS)

3 - new types of data (RNAseq, ChlIPseq..)

4- homogenize clinical annotations and data

9- Increase efficiency of pipelines for combined analysis of
large and heterogeneous datasets
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Voo Updating pipelines

Issues to be solved

1- Matching gene and tissues annotations and IDs
2- Increasing volumes of data (NGS)

3 - new types of data (RNAseq, ChlIPseq..)

4- homogenize clinical annotations and data

9- Increase efficiency of pipelines for combined analysis of
large and heterogeneous datasets

VAT

Florent Chuffart Ekaterina Flin
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Voo Updating pipelines

Ekaterina Flin

Navigate through omics and clinical data

1. Gene/genome annotations

Gene-related annotations are extremely complex and frequently modified

2. Clinical data and tissue annotations

Clinical data are heterogeneous, especially for tissue annotations which are
usually different in different datasets

Part 2 - concept driven omics analyses



Voo Updating pipelines

Navigate through gene-related data

-----------
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»

Ekaterina Flin

Proteins
(Uniprot, Ensembl)
/\
¥/
Platforms Gene Aliases

(Nlumina, Affymetrix) (NCBI, HGNC, MGl)

~

Transcripts Gene Positions

(RefSeq, GenBank)

(UCSC, Ensembl)

Tissue specific
(Unigene, ...)
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Updating pipelines

EpiMed Information System

. - : : . . Ekaterina Flin
Different data types (clinical, omics) from different platforms (Affymetrix, lllumina,...) with

different data formats (txt, excel, pdf, raw data)
- Various access to public databases (sql, html, xml, json, web services)

Scripts and pipelines for data analysis (Python, R)
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A Updating pipelines
W dedicated statistic and bioinformatic approaches

Y EpiMed Database: joint
Meta-data of
omics platforms exploration of data
/

e N
Clinical data

(public/private)
\ J

4 Dictionaries, A

classifications,
| homenclatures )

4 N
Genes, proteins,

assemblies
\ Y,

Ekaterina Flin
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A Updating pipelines
W dedicated statistic and bioinformatic approaches

[
N EpiMed Database: joint
Meta-data of :
onics platforms exploration of data
J
Sl e Florent Chuffart

(public/private)
\ J

4 Dictionaries, A

classifications,
| homenclatures )

ENCODE

4 N
Genes, proteins,

assemblies
\ Y,

EpiMed tools: omic
analysis toolbox

Ekaterina Flin
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Dealing with more and more omic data...

Update and implement pipelines for analysis of omic data of different origin =~ ||
Improve analysis power and efficiency Florent Chuffart

Development of new dedicated pipelines to answer specific biological questions

=> Explore the epigenomic status/landscape of tissue-specific genes using NGS data

NH,
ENCODE %
dl LA
H

EpiMed tools : omic

analysis toolbox
Part 2 - concept driven omics analyses



New pipelines : example 1]

H1 O\ |
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br

Testis specific genes

Clusterized testis specific gene list

b ==

=> Hypothesis : Different epigenetic mechanism are involved in the repression of silent genes

@ Tissue-specific genes have different epigenetic profiles |

!
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Florent Churt

CpG-poor
low H3K4me3

CpG-rich
low DNA me

CpG-rich
high DNA-me
H3K4me3-poor
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@ EpiMed information system and pipelines

W Dedicated statistic and bioinformatic approaches

( "V~ EpiMed Database: joint
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omics platforms exploration of data
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s N
Clinical data
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| homenclatures )

4 N
Genes, proteins,

assemblies
\ Y,

EpiMed tools: omic
analysis toolbox

Ekaterina Flin

http://epimed.univ-grenoble-alpes.fr/database/
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@ Translational and multidisciplinary research
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http://epimed.univ-grenoble-alpes.fr/database/

http://epimed.univ-grenoble-alpes.fr/downloads/epimed open course/

https://epimed.github.io/

https://iab.univ-grenoble-alpes.fr/Plateformes/epigenetique-medicale-et-bioinformatique-epimed


http://epimed.univ-grenoble-alpes.fr/database/
http://epimed.univ-grenoble-alpes.fr/downloads/epimed_open_course/
https://epimed.github.io/

